You could even step into the living room to have more scientific fun. Learn about static electricity with some tiny scraps of paper and a balloon. Blow up the balloon and tie it closed. Make a small pile of paper scraps on the floor, and rub the balloon back and forth several times on your hair or on a sweater. Immediately move the balloon to the paper and watch as the paper scraps cling to the balloon. Rub the balloon on your head or sweater again and then place it against the wall to see it stick there. This surprising sticking happens because you have moved electrons around and the balloon now has more of a negative charge, while the paper or the wall has more of a positive charge. Putting the two surfaces together makes the opposite charges stick to each other.
This is the most kid friendly and fun lab kit you can get. My kids are ages 2 and 4 and cannot get enough of this. Everything in the kit is high-quality, and this kit lasts a very long time. We have done these experiments over and over for 3 months and only recently have used an entire bag of something. I admit to even being impressed by how cool the activities are. This is worth every single penny. I will 100% be ordering another kit when we deplete all the things in ours.
Fire is fun. Colored fire is even better. These additives are safe. They won't, in general, produce a smoke that is any better or worse for you than normal wood smoke. Depending on what you add, the ashes will have a different elemental composition from a normal wood fire, but if you're burning trash or printed material, you have a similar end result. In my opinion, this is suitable for a home fire or campfire, plus most chemicals are found around the house (even of non-chemists).
This solar energy science experiment will teach kids about solar energy and how different colors absorb different amounts of energy. In a sunny spot outside, place six colored pieces of paper next to each other, and place an ice cube in the middle of each paper. Then, observe how quickly each of the ice cubes melt. The ice cube on the black piece of paper will melt fastest since black absorbs the most light (all the light ray colors), while the ice cube on the white paper will melt slowest since white absorbs the least light (it instead reflects light). You can then explain why certain colors look the way they do. (Colors besides black and white absorb all light except for the one ray color they reflect; this is the color they appear to us.)
The "volcano" was basically a miniature mound that fizzled. Could get a bigger reaction from dropping an Alka Seltzer in water or mixing baking soda with a little vinegar. The "giant crystals" only grew a couple of centimeters. All the experiments are on such a miniature scale it doesn't have any of the wow factor we were looking for. I will go back to googling fun experiments to do with my son.
The word “oobleck” comes from a Dr. Seuss story where a young boy must rescue his kingdom from a sticky substance. But the neat part of this experiment is how oobleck reacts to vibrations. Put the oobleck over a subwoofer (on top a cookie sheet!) and watch it dance to difference frequencies. Your dancer will see how sound isn’t just about volume! Check out more of this awesome experiment from Tammy of Housing a Forest.
What better way to teach your kids about science than with more than 70 experiments in a big bag? The Big Bag of Science contains scientific ingredients and a book of 30 pages filled with experiments like soda geysers, twisting tornadoes, growing jelly marbles, vanishing liquids, and more! The instructions are easy-to-follow and color-coded so your child will easily complete the experiment without any trouble. The book explains what’s going on in each experiment so they understand why and how things work.
Can you and the kiddos solve the mysterious case of the disappearing egg shell? Following the simple how-to at Go Science Girls, you’ll learn the step-by-step and talking points about the process along the way. Warning! Although it’s totally non-toxic, toddler aged kids will be tempted to squeeze the egg at the end so make sure it’s a supervised experiment. Visit Go Science Girls to get cracking!
If your kids are curious about how animals like polar bears and seals stay warm in polar climates, you can go beyond just explaining it to them; you can actually have them make some of their own blubber and test it out. After you’ve filled up a large bowl with ice water and let it sit for a few minutes to get really cold, have your kids dip a bare hand in and see how many seconds they can last before their hand gets too cold. Next, coat one of their fingers in shortening and repeat the experiment. Your child will notice that, with the shortening acting like a protective layer of blubber, they don’t feel the cold water nearly as much.

Making an electromagnet at home is fun and easy. Most magnets, like the ones on many refrigerators, cannot be turned off; they are called permanent magnets. This one can be and is therefor called an electromagnet. They run on electricity and are only magnetic when the electricity is flowing. The electricity flowing through the wire arranges the molecules in the nail so that they are attracted to certain metals.
Refraction is when light changes direction and speed as it passes from one object to another. Only visible objects reflect light. When two materials with similar reflective properties come into contact, light will pass through both materials at the same speed, rendering the other material invisible. Check out this video from BritLab on how to turn glass invisible using vegetable oil and pyrex glass.
The kitchen can be an ideal place for performing science experiments, with an adult’s help. For instance, with a few stalks of celery and some food coloring, you can watch capillary action happen almost before your eyes. Capillary action describes what happens as plants move water up from their roots to their leaves. Get four stalks of celery and cut off the bottoms so each stalk is 10 inches long. You’ll also need four identical cups, each filled with a half-cup of cool water. Decide what color you want to make the water, and then add the same number of drops of food coloring to each cup of water. Stir the water well with a spoon. Place one stalk of celery into each cup. After two hours, remove one stalk and label this one “two hours.” After four hours, remove another stalk and label it the same way. Do the same with the next stalk at six hours and the final stalk at eight hours. After you finish, compare the celery stalks to see how each one changed color, depending on how long it was in the colored water.
This simple experiment teaches kids about inertia (as well as the importance of seatbelts!). Take a small wagon, fill it with a tall stack of books, then have one of your children pull it around then stop abruptly. They won’t be able to suddenly stop the wagon without the stack of books falling. You can have the kids predict which direction they think the books will fall and explain that this happens because of inertia, or Newton’s first law.
The Big Bag of Science is filled with all sorts of scientific ingredients and tools for your child to conduct his or her experiments. The bag also helps to teach observational techniques and skills like understanding measurements, experimentation, and analyzation. Note that there are some ingredients not included that can be found in the house (like soda).

The kit includes components that can be used to breed bacteria and experiment with genetic engineering. If you know a child who’re itching to investigate the field of genetics, then this product might serve as a great gift. The Thames & Kosmos Biology Genetics and DNA kit takes children on a journey through reproduction biology, chromosomes and cell components.

The best science experiments guide for kids ages 3-9. This is YOUR go-to resource for all things STEM and science all year round!  STEM stands for science, technology, engineering, and math. You can make STEM and science exciting, educational, and inexpensive for young kids. Fun and easy science for kids starts here! Don’t hesitate getting set up for science at home right away.
These sound like big words for our little ones, but there’s an easier way to break it down. Water and oil won’t mix because they’re not the same “weight” or substance (just like clay and LEGOs won’t become one). Now add a drop of food coloring (which is heavier than oil) and a fizzy tablet and watch the air bubbles take coloring with them to the top. Head on over to S. L. Smith’s blog to see how it’s done.

Insert a little plant science into the mix by re-growing food from scraps. Think onions, potatoes, and lettuces for this one (psst… green onions are a super easy, fast option). Get the low down on all that recycled goodness at Mrs. Happy Homemaker. Since plants need water and sunlight to grow, exposing scrap roots to that winning combo helps them recharge.
Is it a liquid or solid? The answer is both! This DIY slime—made from glue, borax and water—is also known as a polymer (molecules that can stick close together to be a solid or spread apart and take liquid form). And it’s all thanks to borax, which acts as a binder to prevent the glue from going completely liquid. Check out Explorable’s recipe on mixing the ingredients. Prolong the life of your goo by keeping it in an airtight container in the fridge.
Let’s be honest, we’re all secretly waiting for the hovercraft to be a bonafide mode of transport, but in the meantime why not try this Balloon Hovercraft experiment at home? Using just a balloon, a bottle cap and a CD, you’ll be able to create a hovercraft that glides across the table to move, and with just 3 easy steps to follow, it’s perfect for a quick at-home activity.
It’s natural to have a lot of questions about the world. As you wonder about these things and ask questions, you are learning. Curiosity about science helps you become an explorer finding out how things work and why things happen. Anyone can be a scientist, performing experiments to ask questions and get answers. You can even be a scientist at home, working on experiments with ingredients you probably have in your kitchen or laundry room. Always get a parent’s permission before you conduct experiments. Working as a team with an adult is best for safety.