The word “oobleck” comes from a Dr. Seuss story where a young boy must rescue his kingdom from a sticky substance. But the neat part of this experiment is how oobleck reacts to vibrations. Put the oobleck over a subwoofer (on top a cookie sheet!) and watch it dance to difference frequencies. Your dancer will see how sound isn’t just about volume! Check out more of this awesome experiment from Tammy of Housing a Forest.
Invisible inks either react with another chemical to become visible or else weaken the structure of the paper so the message appears if you hold it over a heat source. But we're not talking about fire here. The heat of a normal light bulb is all that's required to darken the lettering. This baking soda recipe is nice because if you don't want to use a light bulb to reveal the message, you can just swab the paper with grape juice instead.
There are loads of different science kits to choose from and we know it can be confusing sometimes which types are ideal for younger children to begin experimenting with. Therefore we have picked some really cool experiment kits. In this review, we have reviewed a whopping 32 science kits that stand out as the best overall, so choosing couldn’t be easier. All have an appropriate age guide so you can’t go wrong with picking.
This experiment is a great way for young kids to learn about static electricity, and it’s more fun and visual than just having them rub balloons against their heads. First you’ll create a butterfly, using thick paper (such as cardstock) for the body and tissue paper for the wings. Then, blow up the balloon, have the kids rub it against their head for a few seconds, then move the balloon to just above the butterfly’s wings. The wings will move towards the balloon due to static electricity, and it’ll look like the butterfly is flying.
3. Now remove about an inch of the plastic coating from both ends of the wire and attach the one wire to one end of a battery and the other wire to the other end of the battery. (It is best to tape the wires to the battery – be careful though, the wire could get very hot!) Now you can experiment by picking up paper clips and small non-aluminum objects.
Wonderful ideas! As a former science teacher, science department chair and system-wide science supervisor,; I salute you! It is mothers like you who keep the spark of investigation going in the eyes of our children. I love, love love hands-on science! You are training the scientists of tomorrow…or maybe the artists…doesn’t matter, we need both! Suggestion: let them see how many drops of water they can get on a penny. All you need is a penny, a medicine dropper and water. Oh, and a very steady hand and table that doesn’t shake. Then fill a jar with water (almost to the top) and predict how many pennies they can put in until the water overflows. Good lesson in surface tension and cohesion. You will need a steady hand, sturdy surface and a lot of pennies! I have some others, but no enough space.

Kids will love shooting pom poms out of these homemade popsicle stick catapults. After assembling the catapults out of popsicle sticks, rubber bands, and plastic spoons, they’re ready to launch pom poms or other lightweight objects. To teach kids about simple machines, you can ask them about how they think the catapults work, what they should do to make the pom poms go a farther/shorter distance, and how the catapult could be made more powerful.


This experiment is a great way for young kids to learn about static electricity, and it’s more fun and visual than just having them rub balloons against their heads. First you’ll create a butterfly, using thick paper (such as cardstock) for the body and tissue paper for the wings. Then, blow up the balloon, have the kids rub it against their head for a few seconds, then move the balloon to just above the butterfly’s wings. The wings will move towards the balloon due to static electricity, and it’ll look like the butterfly is flying.
This blood model experiment is a great way to get kids to visual what their blood looks like and how complicated it really is. Each ingredient represents a different component of blood (plasma, platelets, red blood cells, etc.), so you just add a certain amount of each to the jar, swirl it around a bit, and you have a model of what your blood looks like.
Making an electromagnet at home is fun and easy. Most magnets, like the ones on many refrigerators, cannot be turned off; they are called permanent magnets. This one can be and is therefor called an electromagnet. They run on electricity and are only magnetic when the electricity is flowing. The electricity flowing through the wire arranges the molecules in the nail so that they are attracted to certain metals.
What better way to teach your kids about science than with more than 70 experiments in a big bag? The Big Bag of Science contains scientific ingredients and a book of 30 pages filled with experiments like soda geysers, twisting tornadoes, growing jelly marbles, vanishing liquids, and more! The instructions are easy-to-follow and color-coded so your child will easily complete the experiment without any trouble. The book explains what’s going on in each experiment so they understand why and how things work.
Biology is an important area of science because it teaches us about our bodies and the environment around us. With this Thames & Kosmos Biology Genetics and DNA Kit, your child will jump into the world of heredity and variation of organisms by using a test tube to isolate tomato DNA. This in-depth kit is fun and it covers so many areas of biology that most kits don’t cover. 

Have you noticed that science seems to be a hot topic recently? Wondering how you can help at home? As busy moms of three kids and former elementary school teachers we’ve shared over 30 science experiments for you at The Educators’ Spin On It.  Our biggest tip is to simply allow time for it.  Encourage your child to use those “wh” questions to explore their world through a scientific view…What, Why, How, Where, When. Take a peek below at our science activities and let us know which one you want to do first!


Younger children are most likely to be interested in something which is very hands-on, and gives results quickly. They probably won’t be interested in growing a crystal, and are probably a bit young for something like a robot building kit. Young kids will be most likely to enjoy a gross science kit, or a volcano kit. Also think about safety features when buying for younger children. Make sure they won’t eat anything they shouldn’t, or there are no small parts which could be dangerous.
There is a difference for children and below you will find some of the best science experiments for children that the current market has to offer. Each one is filled with fun ways to explore concepts and scientific ideas that are usually not accessible to a kid. Each one has been designed with careful planning and that is why these are the best for children aged between 6 – 8 years. There is everything from weird and funny experiments to more focused and fascinating one, but each is special with the thinking behind it that let’s get the kids learning in a fun and innovative way. The educational benefits for children enjoying learning have the ability to transform the world and create a better way of understanding education as w whole.
This is an easy and fun kit to learn about science. Got it for a five year old. The concepts are easy to follow and so are the directions. Everything is pretty much provided in the kit in order to make the science experiments with the exception of some ingredients like vinegar or other acidic ingredients that can be easily found in one's pantry or fridge. You will need one paper plate and some Ziploc bags to store the powders provided after opening the package. For example - baking soda. Overall, we've enjoyed this science kit. My five year old asks to make a science experiment each day! Very fun and educational.
Have you noticed that science seems to be a hot topic recently? Wondering how you can help at home? As busy moms of three kids and former elementary school teachers we’ve shared over 30 science experiments for you at The Educators’ Spin On It.  Our biggest tip is to simply allow time for it.  Encourage your child to use those “wh” questions to explore their world through a scientific view…What, Why, How, Where, When. Take a peek below at our science activities and let us know which one you want to do first!
Not only will your kids build these physics machines, but they’ll also learn about the theories and facts behind each by understanding Newton’s Laws. For ages 8 and up, the Engino Newton’s Law Kit will teach your kids the effects of potential and kinetic energy by conducting one of the 8 included experiments. By the end, they’ll understand how energy is transferred from one car to another during a crash, or how an object gets catapulted from its machine.
The droid can be dismantled and put back together in new, different ways giving your child endless possibilities. This kit is compatible with other kids from littleBits, meaning you can combine them to give even more fun opportunities. The droid can be controlled via a remote control available on the app, or it can be set to self-navigation mode. Your kids will be amazed to see their creation roll around the room by itself without crashing into any objects in its path.
Scientific Explorer is the industry leader in fun and educational activity-based science kits for children. Appreciated by parents for their educational value and loved by children for their hands-on fun, Scientific Explorer kits help develop critical thinking skills, inspire imagination, and encourage exploration through interactive experiments and activities that help make learning fun. Scientific Explorer is a member of the Alex Brands Family.
If your snacker has noticed how their apples have turned brown after being left out for too long, then they’ve seen oxidization in action (loss of electrons and nutrients when in contact with oxygen). Fortunately, lemon juice only oxidizes when in contact with heat. This method works with baking soda and milk too. Click here to find out how to write secret messages with your little spy.

How are some dinosaur tracks still visible millions of years later? By mixing together several ingredients, you’ll get a claylike mixture you can press your hands/feet or dinosaur models into to make dinosaur track imprints. The mixture will harden and the imprints will remain, showing kids how dinosaur (and early human) tracks can stay in rock for such a long period of time.
While The Big Bag of Science included some fun chemistry experiments, My First Mind Blowing Science Kit focuses solely on chemistry and chemical reactions. Want to witness a sunset in a test tube? What about a color-changing (or even underwater) volcano? This kit includes ingredients your child will need to conduct these colorful experiments over and over again—or at least until the powders, polymers, and oils run out.
Kids will love shooting pom poms out of these homemade popsicle stick catapults. After assembling the catapults out of popsicle sticks, rubber bands, and plastic spoons, they’re ready to launch pom poms or other lightweight objects. To teach kids about simple machines, you can ask them about how they think the catapults work, what they should do to make the pom poms go a farther/shorter distance, and how the catapult could be made more powerful.
In this quick and fun science experiment, kids will mix water, oil, food coloring, and antacid tablets to create their own (temporary) lava lamp. Oil and water don’t mix easily, and the antacid tablets will cause the oil to form little globules that are dyed by the food coloring. Just add the ingredients together and you’ll end up with a homemade lava lamp!
There is a clear line between experimenting with a homemade science kit and one that is paid for. I like both, but it is easier for children to use and be left to their own devices with the kits that come boxed up. These have all the equipment needed, usually labeled and comes with clear, distinctive and easy to use manuals for conducting the experiment.
Ever got an electric shock off something? Demonstrate the science behind the shocks with this jumping frogs experiment. With just a balloon, some sugar paper and a woolly jumper, you’ll have frogs leaping in no time demonstrating the power of static electricity. It doesn’t have to be frogs either, let your imagination run wild to create some other jumping stars of this easy science experiment!
If you’ve ever wondered how elephants keep their tusks clean, we’ve got the answer. They use elephant toothpaste! Find out how to mix your own and figure out the science behind this dynamic exothermic (heat releasing) reaction from Asia Citro at Fun at Home With Kids. Our favorite part? That you get to throw in some sensory playtime after the action’s over.
Adults and kids will learn amazing new things about basic and acidic solutions with the Mind-Blowing Science Kit. Whether erupting an under-water volcano or growing colorful, jiggly crystals, this science kit mixes learning with experimentation in a fun and colorful way for a wide range of ages. Each of the hands-on activities in the science guide is intended to be performed by a young scientist under adult supervision, although these activities can be adjusted to accommodate a range of ages and capabilities while still maintaining the educational excitement of the original experiments.
This Rainbow Skittles science experiment can be done in seconds, making it a great way to try science at home even with the most easily distracted of toddler-sized assistant. All you’ll need to do is arrange Skittles in a circle on a plate and fill the middle with warm water. Then sit back and watch as the colours drain and mix with the water, creating a cool rainbow pattern in front of your eyes. Plus, any bonus Skittles = a tasty treat for you.
It’s natural to have a lot of questions about the world. As you wonder about these things and ask questions, you are learning. Curiosity about science helps you become an explorer finding out how things work and why things happen. Anyone can be a scientist, performing experiments to ask questions and get answers. You can even be a scientist at home, working on experiments with ingredients you probably have in your kitchen or laundry room. Always get a parent’s permission before you conduct experiments. Working as a team with an adult is best for safety.
×