This grow-your-own experiment that lets you grow crystals inside an egg shell. Be sure to get alum powder that contains potassium, or else you won't get any crystal growth. Adding drops of food dye to the growing solution yields some super cool crystals. A perfectly formed geode takes about 12-15 hours to grow, making this a great weekend project. Check out more of Art and Soul's gorgeous eggs over at their blog!


This grow-your-own experiment that lets you grow crystals inside an egg shell. Be sure to get alum powder that contains potassium, or else you won't get any crystal growth. Adding drops of food dye to the growing solution yields some super cool crystals. A perfectly formed geode takes about 12-15 hours to grow, making this a great weekend project. Check out more of Art and Soul's gorgeous eggs over at their blog!
Adults and kids will learn amazing new things about basic and acidic solutions with the Mind Blowing Science Kit. Whether erupting a color-changing volcano, creating a sunset in a test tube, or growing colorful, jiggly crystals, this science kit mixes learning with experimentation in a fun and colorful way for a wide range of ages. Each of the hands-on activities in the science guide is intended to be performed by a young scientist under adult supervision, although these activities can be adjusted to accommodate a range of ages and capabilities while still maintaining the educational excitement of the original experiments. In addition to providing detailed instructions, the science guide makes it possible for those adults who might not have a background in science, or even any exposure to scientific experimentation, to knowledgably perform experiments successfully. The dynamic, colorful nature of the experiments included in this kit make it great for pleasing a crowd at family gatherings, parties, or science fairs.
The word “oobleck” comes from a Dr. Seuss story where a young boy must rescue his kingdom from a sticky substance. But the neat part of this experiment is how oobleck reacts to vibrations. Put the oobleck over a subwoofer (on top a cookie sheet!) and watch it dance to difference frequencies. Your dancer will see how sound isn’t just about volume! Check out more of this awesome experiment from Tammy of Housing a Forest.
If you do this sidewalk constellation craft, you’ll be able to see the Big Dipper and Orion’s Belt in the daylight. On the sidewalk, have kids draw the lines of constellations (using constellation diagrams for guidance) and place stones where the stars are. You can then look at astronomy charts to see where the constellations they drew will be in the sky.
This mechanical weathering experiment teaches kids why and how rocks break down or erode. Take two pieces of clay, form them into balls, and wrap them in plastic wrap. Then, leave one out while placing the other in the freezer overnight. The next day, unwrap and compare them. You can repeat freezing the one piece of clay every night for several days to see how much more cracked and weathered it gets than the piece of clay that wasn’t frozen. It may even begin to crumble. This weathering also happens to rocks when they are subjected to extreme temperatures, and it’s one of the causes of erosion.

Not only will your kids build these physics machines, but they’ll also learn about the theories and facts behind each by understanding Newton’s Laws. For ages 8 and up, the Engino Newton’s Law Kit will teach your kids the effects of potential and kinetic energy by conducting one of the 8 included experiments. By the end, they’ll understand how energy is transferred from one car to another during a crash, or how an object gets catapulted from its machine. 

Can you make water float? We bet you can. No, you don’t need to be a wizard or a witch. You don’t need to cast a spell. There’s nothing magic about it at all, in fact. You can make water float using good, ol’ fashioned, awesome science. The “trick” to this experiment is air pressure. Get everything you need and the how-to, right here, thanks to Mike Adamick and his book, Dad's Book of Awesome Science Experiments.
By creating an articulated hand model, you can teach kids about bones, joints, and how our hands are able to move in many ways and accomplish so many different tasks. After creating a hand out of thin foam, kids will cut straws to represent the different bones in the hand and glue them to the fingers of the hand models. You’ll then thread yarn (which represents tendons) through the straws, stabilize the model with a chopstick or other small stick, and end up with a hand model that moves and bends the way actual human hands do.

You don’t need a storm to see lightning; you can actually create your own lightning at home. For younger kids this experiment requires adult help and supervision. You’ll stick a thumbtack through the bottom of an aluminum tray, then stick the pencil eraser to the pushpin. You’ll then rub the piece of wool over the aluminum tray, and then set the tray on the Styrofoam, where it’ll create a small spark/tiny bolt of lightning!
My First Mind Blowing Science Kit also comes with cool scientific tools like test tubes, pipettes, stirring sticks, and measuring scoops that will make your child feel like a real chemist. Not only will they learn important skills in conducting experiments, they will also learn the basics of acids and bases. While none of the experiments are particularly messy, it’s safer to perform them on a flat surface with adult supervision.
Education and science go hand-in-hand and one without the other is a sad time for any child indeed. There are loads of ways to get your children into science and the sooner the better. One way is to have fun with scientific experiments that use hands-on learning techniques. The hands-on approach is ideally what young scientists want to do and the less theory the better, especially when they are so young.
By building a lung model, you can teach kids about respiration and how their lungs work. After cutting off the bottom of a plastic bottle, you’ll stretch a balloon around the opened end and insert another balloon through the mouth of the bottle. You’ll then push a straw through the neck of the bottle and secure it with a rubber band and play dough. By blowing into the straw, the balloons will inflate then deflate, similar to how our lungs work.
Children aged 9+ start to want more detailed experiments and activities, which shows they are ready to begin real-science. Whether they have interests in physics, chemistry or robotics there is always something to get them started on their way. Some tops are harder than others and make sure you read all the features and facts so that you find the ideal gift for your child. 

Making ice cream with a cup of half and half, a teaspoon of vanilla, two tablespoons of sugar in a quart bag. Then in a gallon bag about six cups of ice and half cup of salt, anything but table salt should work. Put the quart bag (sealed) in the gallon bag then seal and shake rattle and roll for about five minutes. Then pull out the quart sized bag with your ice cream and add your favorite toppings. – Heydi
For this magic milk experiment, partly fill a shallow dish with milk, then add a one drop of each food coloring color to different parts of the milk. The food coloring will mostly stay where you placed it. Next, carefully add one drop of dish soap to the middle of the milk. It’ll cause the food coloring to stream through the milk and away from the dish soap. This is because the dish soap breaks up the surface tension of the milk by dissolving the milk’s fat molecules.
Insect hotels can be as simple (just a few sticks wrapped in a bundle) or as elaborate as you’d like, and they’re a great way for kids to get creative making the hotel and then get rewarded by seeing who has moved into the home they built. After creating a hotel with hiding places for bugs, place it outside (near a garden is often a good spot), wait a few days, then check it to see who has occupied the “rooms.” You can also use a bug ID book or app to try and identify the visitors.
How are some dinosaur tracks still visible millions of years later? By mixing together several ingredients, you’ll get a claylike mixture you can press your hands/feet or dinosaur models into to make dinosaur track imprints. The mixture will harden and the imprints will remain, showing kids how dinosaur (and early human) tracks can stay in rock for such a long period of time.
Younger children are most likely to be interested in something which is very hands-on, and gives results quickly. They probably won’t be interested in growing a crystal, and are probably a bit young for something like a robot building kit. Young kids will be most likely to enjoy a gross science kit, or a volcano kit. Also think about safety features when buying for younger children. Make sure they won’t eat anything they shouldn’t, or there are no small parts which could be dangerous.
×